A multigrid/ensemble Kalman filter strategy for assimilation of unsteady flows
نویسندگان
چکیده
A sequential estimator based on the Ensemble Kalman Filter for Data Assimilation of fluid flows is presented in this research work. The main feature that filter update, which relies determination gain, performed exploiting algorithmic features numerical solver employed as a model. More precisely, multilevel resolution associated with multigrid iterative approach time advancement used to generate several low-resolution simulations. These results are ensemble members determine correction via filter, then projected high-resolution grid correct single simulation corresponds assessment method analysis one-dimensional and two-dimensional test cases, using different dynamical equations. show an efficient trade-off terms accuracy computational costs required. In addition, physical regularization flow, not granted by classical KF approaches, naturally obtained owing calculations. algorithm also well suited unsteady phenomena and, particular, potential application in-streaming techniques.
منابع مشابه
A Hybrid Particle-Ensemble Kalman Filter for Lagrangian Data Assimilation
Lagrangian measurements from passive ocean instruments provide a useful source of data for estimating and forecasting the ocean’s state (velocity field, salinity field, etc). However, trajectories from these instruments are often highly nonlinear, leading to difficulties with widely-used data assimilation algorithms such as the ensemble Kalman filter (EnKF). Additionally, the velocity field is ...
متن کاملAn Ensemble Kalman Filter and Smoother for Satellite Data Assimilation
This paper proposes a methodology for combining satellite images with advection-diffusion models for interpolation and prediction of environmental processes. We propose a dynamic state-space model and an ensemble Kalman filter and smoothing algorithm for on-line and retrospective state estimation. Our approach addresses the high dimensionality, measurement bias, and nonlinearities inherent in s...
متن کاملSPE 109808 An Iterative Ensemble Kalman Filter for Data Assimilation
The ensemble Kalman filter (EnKF) is a subject of intensive investigation for use as a reservoir management tool. For strongly nonlinear problems, however, EnKF can fail to achieve an acceptable data match at certain times in the assimilation process. Here, we provide iterative EnKF procedures to remedy this deficiency and explore the validity of these iterative methods compared to standard EnK...
متن کاملAn Ensemble Adjustment Kalman Filter for Data Assimilation
A theory for estimating the probability distribution of the state of a model given a set of observations exists. This nonlinear filtering theory unifies the data assimilation and ensemble generation problem that have been key foci of prediction and predictability research for numerical weather and ocean prediction applications. A new algorithm, referred to as an ensemble adjustment Kalman filte...
متن کاملNumber : Title : Data Assimilation with an Extended Kalman Filter for
Model assimilation of data strives to determine optimally the state of an evolving physical system from a limited number of observations. The present study represents the first attempt of applying the extended Kalman filter (EKF) method of data assimilation to shock-wave dynamics induced by a high-speed impact. EKF solves the full nonlinear state evolution and estimates its associated error-cov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2021
ISSN: ['1090-2716', '0021-9991']
DOI: https://doi.org/10.1016/j.jcp.2021.110481